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Processes are considered in which a statistical ensemble ~ of quantum systems 
is split into ensembles, or channels (~o~), conditional to the occurrence, with 
respective probabilities (p~), of associated macroscopic effects. These processes 
are described here by a family of operations T~ : ~.,--> p~ /~ ,  which remarkably 
generalize the usual "state reductions" of the nondestructive measurements. In 
a previous work it was proved that the microscopic entropy of the given open 
system decreases or at most remains constant if all the T~ are pure operations, 
i.e., they transform pure states into pure states; it is proved here that the increase 
in entropy of the external world, computed as S~m(~) = - ~ i p ' f l g p ' f ,  is 
sufficient to compensate for such an entropy decrease whenever the T~ are all 
pure operations of the first kind, whereas whenever some T~ is pure of the second 
kind (or nonpure, too), the total entropy, computed as above, may decrease. 

1. I N T R O D U C T I O N  

In  the q u a n t u m  theory of open  systems condi t iona l  state changes,  called 
operat ions ,  are cons idered  which remarkably  generalize the H a m i l t o n i a n  
evolut ion of the closed systems (Haag and  Kastler,  1964; Davies,  1976). 

In  the fol lowing we are concerned  with a k ind of physical  process in 
which an original  ensemble  ~ of q u a n t u m  systems is split, by an external  

in tervent ion ,  into a countab le  family of ensembles  (or channels)  ( ~ ) :  

J J ~ - ~ ( ~  , ~ 2 , . . . )  (1) 

Precisely, such a spli t t ing requires the product ion ,  by the q u a n t u m  

open  system, of some macroscopic  effects (Ludwig,  1983) on the external  
world;  af terward the t ransmiss ion  of ~ into the final channels  occurs, 
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according to such effects, with respective probabilities (pT~), so that V~, 
Zip7 "= 1. 

Here a somewhat phenomenological description of such processes is 
considered which consists of a countable family 3-= (T~) of operations: 

~ - =  ( r , ) ,  r~: ~ ~ ~ P i  ~ i  ; i= 1 ,2 , . . .  (2) 

An interaction process, as outlined above and described in this way, 
will be called a discrete external interaction of a quantum open system. 

Well-known examples of discrete external interactions refer to nonde- 
structive measurements, in which the operations of the various channels 
are expressed by an appropriate reduction postulate [e.g., Liider's postulate 
for the "perfect" nondestructive measurement (Lfiders, 1951; Ludwig, 1983, 
Chapter 17)]; the irreversible character of such processes was early recogn- 
ized and discussed by yon Neumann (1955, Chapter 5), who devised to this 
purpose, through thermodynamic arguments, the concept of entropy for 
quantum systems. 

Following this approach, as the initial state ~ is transmitted into a 
final channel, conditional to the occurrence of the respective exit of the 
measurement (effect), a well-suited entropy concept for the measured system 
appears to be the conditional entropy (Shannon and Weaver, 1949) 
S ~ C ( ~ )  ~ =~iPi S(~i  ), which is the mean value of the yon Neumann 
entropies S ( ~ )  of the different channels. 

Concerning the measuring apparatus, it seems quite natural to identify 
its final entropy with the "mixing entropy" (Wehrl, 1978) S~-m(~)= 
- ~  ~ p~ lg p~, i.e., the Shannon entropy of the final distribution probability 
(p~) of the "pointer" (Shannon and Weaver, 1949), the initial entropy 
being assumed to be zero. 

It is worthwhile to remark that, within the foregoing assignment of 
final entropies in a measurement process, the final state of the apparatus 
turns out to be equivalently represented by the classical discrete probability 
distribution (p~'). This description of the apparatus may be justified to some 
extent in the quantum theory of measurement: in particular, in a recent 
paper of Herbut (1986), concerning an improvement of Jauch's approach, 
the compound state of the quantum system plus the measuring apparatus 
is described by a "hybrid" state ( ~ ,  PT)- 

Now, due to well-known inequalities (Klein, 1931; yon Neumann, 
1955; Shannon and Weaver, 1949; Wehrl, 1978), it turns out that in any 
perfect nondestructive measurement 

V~, S(~) <-- S~C(~) + S~"(~)  (3) 

which means that, according to the above assignment of entropies, the total 
entropy cannot decrease. [Mathematically, (3) expresses the result stated 
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by von Neumann; however he, as well as most authors, makes a different 
distribution of entropies, namely the whole entropy S(Y~ipTWF)= 
S~ + Se~"(~) is assigned to the measured system (von Neumann, 1955, 
Chapter 6)]. 

In a previous work (Ascoli and Urigu, 1984), another inequality has 
been proved, namely 

V~, S~r -< S(~) (4) 

which states that the entropy of the quantum system alone does decrease 
or at most remains constant. Now it turns out that the proof holds not only 
for the perfect nondestructive measurement, but for any discrete external 
interaction 3-= (T~) which is "pure," i.e., such that, for any i, T~ is a pure 
operation, i.e., it transforms pure states into pure states. 

So, one naturally wonders whether (3) is true for this more general 
class of processes, too. 

It turns out that the known results do not apply so directly as for the 
measuring process considered above: in this respect there proves useful the 
known classification of the abstract pure operations into two classes, first 
kind and second kind operations (Davies, 1969, 1976; Hellwig and Kraus, 
1969; Haag and Kastler, 1964). In fact, examples are given in Section 4 
which show that (3) is contradicted whenever some pure operation of the 
second kind occurs within 3- (or, more generally, when nonpure operations 
occur). 

On the other hand, it is proved in Section 3 that (3) holds true for any 
pure discrete interaction 3-= (T~) such that, for any i, T~ is a pure operation 
of the first kind. Thus, in this case, if the increase of external entropy is 
identified with the entropy Se~m(~), an entropy decrease for the quantum 
system always occurs together with an entropy production such that the 
entropy of the whole system including the surroundings cannot decrease, 
preventing therefore the possible existence of such engines as the so-called 
"Maxwell's demon" (Szilard, 1929; Brillouin, 1962; Penrose, 1970). 

It may finally be of interest to remark that the mathematical construction 
used in the proof provides an alternative, less phenomenological model of 
the discrete external interactions of open systems. Such a model arises from 
a quantum description of the surroundings along the lines of the work of 
Hellwig and Kraus (1969, 1970) and it is essentially equivalent to Kraus's 
description (1983, Section 5) of two "complementary operations." The 
discussion of Section 4 concerning such a quantum model leads to some 
understanding of the fact that only in the case of an external interaction 
of the first kind may the external world equivalently be described by the 
classical state (P79, so that its final entropy may be identified with Se~m(~). 
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2. PRELIMINARY CONCEPTS 

In the following the state ~, of the quantum system is described by a 
density operator W of some separable Hilbert space H ;  let 7C denote the 
set of all density operators in H and 7t/"L the real vector space generated 
by ~ 

A physical operation is described here as usual (Haag and Kastler, 
1964; Ludwig, 1970, 1983; Davies, 1976) by a linear mapping T from 74 rL 
into itself which is positive and does not increase the trace-norm: i.e., for 
any W ~ ~ such that W-> 0 one has T(W)  _> 0 and Tr W-> Tr[ T( W)] > 0. 
The transmission probability p~ of the initial state m through T is given 
by p~=Tr[T(W)]  and, in the case p ~ # 0 ,  the normalized operator 
T(W) /p  ~ describes the final transmitted state. 

The main interest in the sequel is in those special operations, called 
pure operations, which transform pure states into pure states (Davies, 1976; 
Hellwig and Kraus, 1969); it has to be pointed out that, according to this 
terminology, a pure operation is not necessarily an extremal element of the 
convex set of the operations [see Remark 1 to (7) below] (Davies, 1976, 
p. 21). 

A theorem due to Davies (1969; 1976, Theorem 3.1, p. 21) allows a 
useful classification of the pure operations, defined as above. The statement 
may be formulated, with reference to the terminology of Hellwig and Kraus 
(1969), as follows. 

Theorem. Every map T describing a pure operation within the state 
space ~ is of one, and only one, of the two following kinds: 

1. Pure operations of the first kind: 

T(W) = A WA* (5) 

where A is a bounded linear or antilinear operator of H with [IAI]-< 1 [the 
adjoint A* of any antilinear bounded operator A of H is defined by (see, 
e.g., Messiah, 1961-1962) Vl ), H, (A*~:, 0) = (r AqJ)]. 

2. Pure operations of the second kind: 

T(W)  = Tr(WB) [ g,)(q,] (6) 

where 10} is a normalized vector of H, and B is a linear operator of H such 
that 0 -< B -< 1H and d im(BH) >- 2, i.e., its range is at least a two-dimensional 
subspace of H. 

An operation having the form (6), even in the case B has a one- 
dimensional range, is called a degenerate operation (Davies, 1976); we 
remark that a degenerate operation may always be represented in the form 

V W ~  7r L, T(W)=Tr(WB)IO)(~,I =E A, WA* (7) 
i 
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where each Ai may be chosen to be either a linear or an antilinear bounded 
operator of  H. Take, e.g., for any i, A;=  [qJ)(r where (r is an 
orthonormal basis in H and - /B is the positive square root of B (the sum 
converges with respect to the trace-norm topology); every linear Ai can 
instead be separately replaced by the antilinear KAy, where K is any 
antilinear conjugation operator which leaves [r invariant (see Section 3). 

Remark 1. Starting from the above construction, it may be proved that 
the pure operation (6) is a convex linear combination of pure operations 
of  the first kind if and only if Tr B-< 1. 

Remark 2. It is easy to see that one and the same operation of  the first 
kind (5) can be expressed either through a linear or an antilinear operator 
A if and only if it is a degenerate operation. 

The pure operations under Theorem 1 do not have common elements, 
according to the following proposition: 

Proposition. Let A, B be bounded linear operators of H with B-> 0; 
[~p) c H. Then the following conditions are equivalent: 

(a) V W e  ~/g-L, Tr( WB)lq~)(4,l = AWA*. 
(b) B has a one-dimensional range. 

Proof ( b ) ~ ( a ) :  Take, in the above construction (7), r as a normal- 
ized eigenvector of B belonging to its one-dimensional range; then the sum 
on the right-hand side of  (7) reduces to one term only. 

( a ) ~ ( b ) :  for any [~:)e/4, take W =  [sc)(~:l; then 

vlr e/4, (~, Br r [A~:)(~:A*[ 

Thus for any [~:) e H, A[ ~:) = a (sc)[ ~p) with a (s c) e C; then d im(AH) = 1, hence 
d i m ( A ' H )  = 1; therefore, as B = A ' A ,  d i m ( B H ) =  1 �9 

The physical processes called in the introduction discrete external 
interactions will be described, as in (2), by a finite or infinite countable 
family 3- = (T~) of operations on ~ such that 

V ~ c  ~ ~pT=Y.  Tr[T~(W)]=I (8) 
i i 

This concept corresponds to Davies' definition of "instrument" on a 
discrete space (Davies, 1976). For any i such that p~' # 0, ~o~- = (1/p~ ~ T~(W) 
describes the ith channel. 

A discrete external interaction 3-= (T~) such that, for any i, T~ is a 
pure operation of the first kind will be called a pure discrete (external) 
interaction of the first kind. 

Let us finally introduce the required entropy concepts. 
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The quantum-theoretical (microscopic) entropy of an ensemble to 
described by a density operator W is expressed by the yon Neumann formula 
(yon Neumann, 1955) 

S(to) = Tr ~(W) (9) 

where a = a(x) is the real, continuous concave function a ( x ) = - x  lg x for 
x>O,  ~(0) =0.  

With reference to a discrete external interaction ~-, as described above, 
we shall be concerned also with the following entropy concepts: 

S~(to) = S(to~), for any i such that P7 # O: microscopic entropy of the 
ith channel. 

s~~ E pTs,qto) 
i 

pTr  

is the final microscopic entropy of the quantum system, that is, the mean 
entropy of the channels or conditional entropy (Shannon and Weaver, 1949). 

Se~m(to) = ~ i  o(P~): mixing entropy or Shannon's information entropy 
of the probability distribution (pT) (Wehrl, 1978, Section II.B; Shannon 
and Weaver, 1949). 

It is worthwhile to remark that the sum of entropies S z-c + S ~r" may be 
expressed as the von Neumann entropy of  a suitable density operator in a 
larger Hilbert space /-I. In fact, take f o r / 4  the direct sum of a number of 
copies of  H equal to the cardinality of the family 3-= (T~) of operations: 
/~r _- H0)  H @  H0)  . . . .  Then it is easily checked, for instance, by diagonaliz- 
ing the operator 0)i T~(W), that (Wehrl, 1978, Section II.F) 

SJC(to) + S~-" (to) = Y~ P7 Tr{~[ T~( W)/p7]} +Z ~(P7) 
i i 

= S [ O  Ti( W)]  (10) 

Vtoe ~/,F, 

3. ENTROPY BALANCE IN A PURE DISCRETI~ INTERACTION 
OF THE FIRST KIND 

Let us firstly restate the theorem proved in a previous paper (Ascoli 
and Urigu, 1984). 

Theorem 1. Let 3-= (T~) describe a discrete external interaction (see 
Section 2); then the following two conditions are equivalent: 

(i) 3- is pure. 
(ii) Vto e Wr, Se~C(to) _< S(to). 
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Proof. The implication ( i )~ ( i i )  is proved in Ascoli and Urigu (1984). 
To prove ( i i )~( i ) ,  let us consider any nonpure interaction 3-= (T~); 

then there exist a channel i and a pure state ~ such that T~ transforms 
into a mixed state ~ - .  Therefore SF(~)  = S (~F)  > S(~)  = 0 and S~C(~) > 
S(u~), contrary to the hypothesis (ii). �9 

Let us now prove the main theorem of this paper. 

Theorem 2. Let 3 = (T~) describe a pure discrete interaction of the first 
kind; then the following inequality holds: 

V ~  74/', S(~)<-S~-C(~)+ Se~m(~) (11) 

Proof. As ~ =  (T~) consists of operations of the first kind, the T~ are 
described by 

Vi, V W c  ~r T~(W)=A~WA* (12) 

where (A~) is a family of bounded linear or antilinear contractions in H 
fulfilling the normalization condition (8), i.e. (with respect to the ultraweak 
topology of operators), 

A'A,  = 1H (13) 
i 

Consider first the case in which every A~ is linear. 
According to well-known results (Riesz and Nagy, 1960), any linear 

contraction A in a Hilbert space H can be expressed, within an "extension" 
space H = H, as the first diagonal element 

A = al/11 
A 

of the operator matrix representinfi a unitary operator q / o f  H, with respect 
to the decomposition H = HO)(HO H). 

Let us show that here, thanks to condition^(13), the whole family (A~) 
can be expressed within the extension space H, defined at the end of the 
previous section, as the whole first column 

(A,) = (o'//,~) (14) 

of the operator matrix representing an operator ~ /o f /q ,  which is isometric 
on H 0 ) 0 @ 0 G . . . .  A representation of the type (14) can be explicitly 
derived by a straightforward generalization of well-known procedures (Riesz 
and Nagy, 1960; Hellwig and Kraus, 1969, 1970; Kraus, 1971); an essentially 
equivalent representation is found in Kraus (1983, Section 5). 

Let H '  be a Hilbert space with dimension equal to the cardinality of 
the family (T~) of the operations to be represented. Let (Q~) be a maximal 
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orthogonal family of one-dimensional projectors of H'; then the tensor 
product space H = H| may be decomposed as 

I2I = H| H' = Y~ (H| QiH') = ~ Hi (15) 
i i 

where all the Hi are canonically identifiable with H. Let now M be the 
column matrix constructed with the operators A2, A3 , . . . ,  and let us define 
the following matrix of operators of H, which represents, with reference to 
the decomposition (15), an operator ~ of /4 :  

all=(A1 UIA* ) 
\ M -~/(1 t~e. - MM*) (16) 

where U1 is the partially isometric operator, which enters into the polar 
representation A1 = U ~ / ~ .  

The operator o~ defined in this way is then a part~lly isometric operator 
whose initial projector E = q/*q/ is such that EH~_ HOO00... (Riesz 
and Nagy, 1960) and it describes the whole family of linear contractions 
(Ai) within a Hilbert space/4 whose canonical decomposition is minimal, 
in the sense that the component subspaces are in one-to-one correspondence 
to the operations of 3-. Whenever ~1 may be chosen to be unitary (as always 
it may be in the finite-dimensional case, U, too, is unitary. A unitary U 
may always be obtained, in analogy to Kraus construction (Kraus, 1983, 
Section 5) of two "complementary" operations, by adding within /4 an 
extra component subspace H; then this U is simply obtained from (16) by 
taking A1 = 0 and U~ = lx. 

Then, as is easily checked, the family of operations (12) can be represen- 
ted as 

Vi, VWe OWL, T~(W)=AiWA*~ 

=Tr'[(l|174174 (17) 

where Tr' means the partial trace with respect to H'; furthermore, 

VWe ~ G T~(W)=Z (l|176174176 (18) 
i i 

We may now apply a well-known inequality concerning the entropy 
variation in a perfect nondestructive measurement (Klein, 1931; yon 
Neumann, 1955; Wehrl, 1978) to obtain 

VWE ~U, S[~ (l|174176176 *] 

(19) 
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Furthermore, by the unitary invariance property of the von Neumann 
entropy (9) and by its additivity property (Wehrl, 1978, Section II.E.), one 
obtains 

V W ~  ~ S [ q I ( W | 1 7 4  (20) 

Finally, through the identity (10) of the previous section and through 
(18)-(20), the inequality (11) is proved for first-kind interactions (12) with 
linear Ai. 

The case in which some of the A, are antilinear can be reduced to the 
one just considered as follows. 

For any orthonormal basis (e,) of H, let K be the antilinear operator 
that transforms the components of  any vector, with respect to (e;), into their 
complex conjugates; then any antilinear operator A can be represented in 
the form A = K(KA) ,  KA being a linear operator. We also use the known 
properties concerning adjoints of antilinear operators (Messiah, 1961-1962): 
K * =  K and (AB)*=  B ' A * ,  A and B being either linear or antilinear 
operators. Then, for any self-adjoint linear operator B of trace class of  H, 

Tr( K B K  ) = Z ( e~, KBKe,) = Y. ( e,K*, BKe~) 

= ~ (el, Bei) = Y, (e,, Be,) = Tr B (21) 
i i 

In general, for any function f such t h a t / ( B )  remains of trace class, 
using the spectral resolutions B=Y.,bgP,, K B K = ~ , b ~ K P j K ,  hence 
[( K B K  ) = Y., f (  bi) KP, K, it follows that 

Tr[ f (KBK)]  = ~ f ( b , )  Tr(KP~K) = ~ re(b,) Tr P~ = Tr [ / (B) ]  
i i 

Therefore, for a channel with antilinear A,, 

P7 = Tr(AgWA*) = Tr [K (KA,) W(KA,)*K*]  = Tr[(KA,) W(KA,)*] 

and likewise 

S ~ ( ~ )  = Tr ~[K (KA,) W ( K A , ) * K * / p ? ]  = Tr ~[(KA,) W(KA,)*/p ' f ]  

Thus, the sum S ~c + S ~" remains unchanged when the antilinear operators 
occurring within (A~) are replaced by their respective linear parts (KAy), 
so that the above proof  applies. 

Remark. Though Theorem 1 remains true when substituting in the 
definitions of the entropies the function o(x) with any continuous, concave 
function f ( x )  such that f ( 0 ) = f ( 1 ) = 0 ,  this is not the case for Theorem 2. 
In fact, the von Neumann entropy (9) is the only functional of ~o, up to a 
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constant factor, which satisfies the identity (10), i.e., which has the additivity 
property (see Wehrl, 1978, Section II.E; Shannon and Weaver, 1949). 

4. CONCLUDING REMARKS 

According to the main theorem proved above and to the one proved 
in (Ascoli and Urigu (1984), for any pure discrete external interaction of 
the first kind 

V~  ~ ~F', Se~C(~) -< S(~,) <- SJC(~) + S3m(~) (22) 

As remarked in advance in the Introduction, the right-hand inequality 
of (22) cannot hold unconditionally in the case 3- describes a pure interac- 
tion which involves operations of the second kind. Let us take, as a typical 
example, the following interaction 3 ~, which gives rise to a single channel 
through a single operation T of the second kind: 

3 - = ( T ) ,  T: W--> T ( W ) = ( t r  W)P (23) 

where P is a one-dimensional projector of  H. Then, for any nonpure state 
,,.,,,,e ~:  S(~,~)> S~C(,,,m)+ S~m(~,,)=0. 

For interactions which involve nonpure operations, too, in spite of 
their mixing-enhancing property, the right-hand inequality of (22) is in 
general not true. Consider, e.g., with H = C 2, the following interaction, 
with a single channel, depending on one real parameter a:  

~ ( a ) = (T , ~ ) ,  T,~: W--> T ,~(W)=PWP+U(a)P 'WP•  (24) 

where P + P ' =  1 c 2 and U(a) is a unitary operator whose representation, 
with respect to an orthonormal basis associated with (P, p_L), is 

= ( cos(a /2 )  sen(a /2)~  
\ - s e n ( a / 2 )  cos(a~2)]' a real 

Formula (24) may describe a Stern-Gerlach experiment, with spin -1 
particles, in which the two emerging beams are mixed, after a rotation over 
an angle a of the polarization of the lower beam. 

For a =~', formula (24) gives an equivalent expression for (23) [see 
also (7)]; taking instead a # ~r, but close to ~r, the initial state W is in 
general transformed into a mixed state which is in any ease "close" to the 
pure state P, so that S~C(~) + S~m(~) ~ 0; therefore, for the chaotic initial 

1 1 • state Wc = ~P + ~P , one has S(We) = lg 2 > Se~(We) + S~"(We). 
This example also shows that in general a pure interaction of the second 

kind may be depicted as a limiting ease of a nonpure interaction. 
According to the above considerations, if a nondecrease of the total 

entropy is wanted, the external entropy variation cannot always be identified 
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with the entropy S~m; this latter entropy concept rather expresses a measure 
of the amount of information that is contained in the probability distribution 
(pT~ according to the mathematical theory of communication (Shannon 
and Weaver, 1949). 

In a less phenomenological model than the one consisting in the family 
of operations g--= (T~), the external entropy production occurs on an exter- 
nal system which is supposed to interact with the open system; hence the 
computation of the external entropy production concerns the description 
of the final state of such an external system, which may be supposed to be 
in an initial pure state (Kraus, 1971, Section 2). 

In this respect, the mathematical construction carried out within the 
proof of the main theorem constitutes a simple dynamical model arising 
from a purely quantum description of the external system: this model 
generalizes the well-known one occurring within the quantum theory of 
measurement, along the lines of the approach of Hellwig and Kraus (1969, 
1970; Kraus, 1971, 1983). 

The "scattering" operator ~// in (18), if it is constructed so as to be 
unitary, as outlined after formula (16), describes the free Hamiltonian 
evolution of the composite system (quantum system plus external system), 
from an initial state, described by W| P1, to a final one; afterward a perfect 
nondestructive measurement is performed on the composite system with 
respect to a complete family of orthogonal properties (P/) of the external 
system. I remark that the possibility of describing the whole family 3"- = (T~) 
of operations as a perfect nondestructive measurement on the composite 
system is a consequence of the normalization condition (13). 

The final reduced density operator of the external system turns out to 
be Y.~ pT~Pi, as follows by taking the partial trace of (18) with respect to the 
Hilbert space of the given quantum system. Thus, irrespective of the initial 
state ~ of the quantum system, in this model of a pure discrete interaction 
of the first kind the external system is always left in a mixture of the same 
orthogonal pure states; hence, the description of the external system con- 
cerning its entropy evaluation may be equivalently (Herbut, 1986) accom- 
plished through the classical state (pT~). 

Concerning pure operations of the second kind, by using their rep- 
resentation (7), it is easily realized that a quantum model of the type 
considered above can even be constructed when such operations occur; in 
general, it could even be constructed when nonpure completely positive 
operations occur (K_raus, 1971, 1983; Lindblad, 1976); however, in these 
cases the resulting quantum model is expected to be less simple than the 
previous one, so that the entropy of the reduced density operator of the 
external system is no longer equal to the mixing entropy S~m(~): then it 
is not surprising that the right-hand inequality of (22) may be violated. 
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